
Eur. Phys. J. B 41, 549–556 (2004)
DOI: 10.1140/epjb/e2004-00347-x THE EUROPEAN

PHYSICAL JOURNAL B

Charge separation in liquids

M.S. Mikhelashvili and O. Agama

The Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel

Received 28 October 2003 / Received in final form 1 June 2004
Published online 5 November 2004 – c© EDP Sciences, Società Italiana di Fisica, Springer-Verlag 2004

Abstract. The common theory of reversible charge transfer (RCT) at low donor system excitation power in
liquids is examined. The space averaging procedures describing the kinetics of RCT in the liquid space are
discussed. The reaction space is presented as a totality of independent subgroups with one excited donor
and some group of acceptors effectively interacting only with the donor in the given “subgroup”. We have
shown that the theory [3–5] gives questionable results for cation state probability for the usual parameters
of this problem. If the acceptor concentration or the charge transfer rate constants are low, then the cation
state probability behaves the same in the two theories [3–5] and [7,8]. The correct account of the donor’s
ground state change and charge back transfer in the RCT theory gives the new, not contradictory results,
different from the behavior of the results in references [3–5], but near to results of [7,8]. The molecules
motion accelerates the ionization of donors and neutralization of ions. The influence of the motion of
neutral and ionized molecules on charge transfer kinetics is different. The Coulomb interaction of ions is
taken into account; the effect depends on the space averaging method used. The new approximation in
this article in comparison with references [3–6,9] consists in the space averaging procedure of the donor
cation state probability, which takes into account the donor’s ground state.

PACS. 78.20.Bh Theory, models, and numerical simulation – 71.90.+q Other topics in electronic structure

1 Introduction

Reversible charge transfer (RCT) in solutions is respon-
sible for quantitative and qualitative alterations in such
important relaxation processes as solar energy conver-
sion [1,2], is among the most important elementary
chemical reactions. Recently numerous studies have been
devoted to photo-induced electron transfer and geminate
recombination (back electron transfer) in solutions [3–9]
for low and high excitation power [10]. Different theories
for describing RCT in solutions, giving different results
[3–9], are based on different methods of space averaging for
the donor-cation state probability P (t). A proper account
of back charge transfer, which prevents the charge separa-
tion in the RCT processes, is of crucial importance [3–6,9].

In the new theory of RCT (the NAP model [3–6]),
a ‘new’ averaging procedure is used to calculate forward
and back charge transfer. The ions created with a distant-
dependent ionization rate, either recombine or separate by
diffusion, according to the kinetic scheme:

[D. . .A]← [
D+. . .A−]→ D+ + A−. (1)

In the NAP model, instead of solving the differential
equation for the radicalion population and then averaging

a e-mail: agam@phys.huji.ac.il

over all of the acceptor configurations, the equation is first
averaged over N-1 acceptors, and then solved. To get the
total probability P (t) of a donor’s cation state, the pair
distribution function is averaged over the final coordinate
and the thermodynamic limit is taken [3,4]. The space
averaging procedure is done only for the forward charge
transfer stage, resulting in questionable behavior of the
probability P (t) [15].

The assertion by authors in reference [6], that the the-
ory [3–6] is “exact” but the theory [7] is “erroneous” is
not convincing and requires a more detailed discussion of
the donor cation state probability. In this work we present
the common theory of RCT kinetics for liquids and discuss
different averaging procedures.

Charge separation in solutions is determined by charge
transfer rate constants, depending on intermolecular dis-
tances, which are a random function of time in liquids as
an accidental Brownian value. The random Hamiltonian
influences rate constants, which are modulated by molecu-
lar motion [11]. In slow reactions many collisions between
molecules have to take place prior to reaction. Moreover, a
relatively long time of reaction permits the restoration by
diffusion of the initial distribution of acceptors around the
un-reacted donor molecules [14]. It is well known [9,12–14]
that the diffusion of excitations markedly affects the yield
of energy transfer. In previous theories [3–6] charge back
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transfer has not been taken into account correctly, creating
incorrect results for the influence of random Hamiltonian
in the increase of donor’s cation state probability [15]. This
point should be discussed. We discuss here the space aver-
aging procedure for the probability P (t) and comparison
of results is presented from computer simulations.

2 Reversible charge transfer theory

Here we give a more detailed description of charge sepa-
ration kinetics, which has been discussed recently [3–10].
The model that is studied theoretically is a three-level sys-
tem. The lowest level (ground state) is a neutral ground
state donor and neutral acceptor. The highest level is
an electronically excited donor (at the time t = 0) and
neutral acceptor. The third level is an unexcited donor –
cation and one acceptor – anion with the rest of the accep-
tors remaining neutral. Forward electron transfer can take
place from the excited donor to any acceptor. However,
back electron transfer is taken to be geminate. Back trans-
fer can occur only from the anion that initially receives the
electron. Transfer of the electron to another donor – cation
is not possible at low concentration of excited donors.
Electron transfer from the acceptor anion to another neu-
tral acceptor is not included in the treatment, although
this is physically possible. The excited donor, with sur-
rounding acceptors effectively interacting with this donor,
presents the independent subgroup [12–14]. There is no
back transfer between acceptor – anion from any subgroup
and donor – cation from another subgroup due to the low
concentration of reactants.

The probability P (t) of the cation state of donor S
may be obtained [7–9] using a certain generaliza-
tion of the method, which was first proposed by
Antonov-Romanovskii and Galanin [12,13] for the descrip-
tion of an electronic energy transfer in a solid solution
and subsequently used [14] for liquids. At a sufficiently
low concentration of acceptors the latter may be consid-
ered as point particles [9]. In this case the differential en-
counter theory properly describes the quenching kinetics
and quantum yield of luminescence [5,7,14], using the bi-
nary approximation. The reaction space with randomly
distributed donors S and acceptors A with a concentra-
tions CS � CA can be presented as a totality of the
independent subgroups – “vessels” [14] with one excited
donor and some group of acceptors effectively interact-
ing only with the donor in the given subgroup. In such
case the average probability over all subgroup donor cation
states is an increasing function of the acceptor’s concen-
tration [7,15].

Let P+(r, t) represent the probability that acceptor
anion A− is located at a distance r, r +dr from the donor
molecule S+ which is in the cation state [7–9], calculated
for one molecule S∗. It is assumed that the two molecules
are separated by a distance r at zero time and that molec-
ular collisions occur only as a result of Brownian motion.
We accept that molecules undergo a motion by a diffu-
sion coefficient D = DS + DA [14,16]. It should thus be

expected that the charge transfer kinetics will be deter-
mined by the combined diffusion coefficient D. The varia-
tion of P+(r, t) with time occurs due to the forward elec-
tron transfer between S∗ and A molecules and the back
charge transfer from A− to S+ and also due to their mo-
tion according to the Fick’s diffusion equation [16]. The
initial condition is:

P+(r, 0) = 0. (2)

The changing of P+(r, t) occurs due to the charge
transfer and the molecular motion. For one pair of
molecules P+(r, t) satisfies the equation [7–10,14]:

∂P+(r, t)/∂t = kf (r)n(r, t) − kb(r)P+(r, t)

+
(
D1/r2

)
(∂/∂r)r2e−V (∂/∂r)eV P+(r, t) (3)

where D1 is the encounter diffusion coefficient of ions.
The attractive Coulomb potential V = −rc/r is expressed
through Onsager radius rc = e2/εkT [16]. The partially
reflecting or only reflecting boundary conditions are [16]:

4πr2D2∂
[
eV P+(r, t)

]
/∂r|r12 = kactP

+(r, t), (4)

∂P+(r, t)/∂r|r12 = 0. (5)

kact is the rate of the additional reaction, which differs
from kb. Above r12 – is an encounter distance – approx-
imated by a sum of radii of two interacting molecules.
n(r, t) is a pair distribution function of reactants and is
determined by the equation:

∂n(r, t)/∂t = D2∆n(r, t)− kf (r)n(r, t). (6)

D1 is the encounter diffusion coefficient of neutral
molecules. In equations (3) and (6) 4πr2n(r, t) is the prob-
ability that the acceptor molecule is located at a distance
between r and r+dr from the excited donor molecules S∗,
calculated for one of excited molecule [12–14]. The initial
and boundary conditions for n(r, t) are [16]:

n(r, 0) = 1 (7)
∂n(r, t)/∂r|r12 = 0. (8)

Equation (8) implies no reaction on the encounter. At time
t = 0 the ensemble of donors is optically excited by an
external source. Deactivation of donors occurs due to the
donor’s natural decay and the intermolecular charge trans-
fer in liquids with rate constants [12–17]:

ko = 1/τ rate of excitation’s natural decay (9)

kf = (1/τ) exp[(Rf − r)/af ], forward transfer (10)

kb = (1/τ) exp[(Rb − r)/ab], back transfer. (11)

Here τ is the time of donor excitations natural decay, Rf

and Rb are characteristic distances of the Ferster-Dexter
excitation resonance transfer theory. For deriving of the
probability of the donor – cation states, reference [7] uses
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the obvious equality of derivatives for donor-cation and
non-cation states probabilities:

P ′(t) = −N ′
nc(t) (12)

and derived the formula of donor cation-state probability
for low excitation power

P (t) = 1− exp
[
−4πCA

∫ ∞

r12

P+(r, t)r2dr

]
. (13)

At a low concentration CA of molecules A or at
small kf (r) the integral term in equation (13) has a small
value. The decomposition of equation (13) with a such low
parameter gives the result [3–5] – equation (14).

This averaging method is an approximation, which
does not differentiate between donor’s excited and ground
states N∗(t) and Ngr(t) in the averaging process, and thus
does not give full account of the back reaction, particularly
the role of diffusion (see discussion).

3 RCT according to the theory [3,6],
the NAP method

In the theory [3–6] the donor cation state probability P (t)
is associated with the distribution of ions m(r, t) by the
relation:

P (t) = 4πCA

∫ ∞

r12

m(r, t)r2dr. (14)

One should take into account simultaneously the back and
forward electron transfer, as in equation (9) of [5]:

∂m(r, t)/∂t = kf (r)n(r, t)N(t) − kb(r)m(r, t)

+
(
D1/r2

)
(∂/∂r) r2eV (∂/∂r)e−V m(r, t). (15)

Equations (3) and (15) are different by the func-
tion N(t) in the right side of equation (15). Moreover,
here the back transfer recombination term proposes and
assumes that the donor in the reaction subgroup is in the
cation state with probability P (t) = 1. This leads to seri-
ous differences in qualitative and quantitative results. For
the study of the photo-induced charge separation kinetics
this method restricts us to the conventional encounter the-
ory [5], which is binary when applied to liquid solutions.
We will see that equation (15) for m(r, t) contradicts the
condition of the binary approximation.

After pulse excitation of the sample, the total num-
ber of excited donors N(t) obeys the conventional kinetic
equation of the differential non-Markovian encounter the-
ory (see Refs. in [5,9]):

dN(t)/dt = −kI(t)CAN(t)−N(t)/τ (16)

kI(t) =
∫

kf (r)n(r, t)d3r. (17)

The diffusion of neutral or ionized molecules exerts differ-
ent influences on the cation state probability of a donor

in liquids according to the theory [3–5]. If in lacking of
back transfer the motion of molecules only promotes ion-
ization [5], increasing P (t), then when back transfer is
available, the greater mobility of ions promotes recombi-
nation, decreasing P (t).

The effect of intra-molecular radiation and radiation-
less decay of the donor may be incorporated [9] into the
final results by multiplication with an exp(−t/τ). An addi-
tional discussion of the role of τ is given in reference [21].
In the binary approximation P (t) must be linear in the
acceptor concentration CA [5]. At time zero, t = 0, the
acceptor molecules are uniformly distributed, the func-
tion m(r, t) satisfies the initial condition:

m(r, 0) = 0 (18)

at r > r12 – the sum of the radii of two molecules.
The NAP model uses the reflecting boundary

condition [9]:

∂eV m(r, t)/∂r|r12 = 0. (19)

It is useful in the general case of partially reflecting
boundary conditions [15], particularly when Rf is small
and D has a moderate value.

For a pair distribution function of reactants n(r, t) the
NAP method uses the equation (6) with initial condition
and reflecting boundary condition, equations (7) and (8).
The donor excited state probability is [12–14]:

N(t) = exp(−t/τ) exp
[
−4πCA

∫ ∞

r12

n(r, t)r2dr

]

= exp(−t/τ) · S(t). (20)

Shown below is the crucial role of the function S(t)
in the NAP model [15]. It is also shown that physically
correct results in the theory [3–6] occur only on condition
S(t) ≈ 1. For a high concentration of acceptors the mul-
tiplier S(t) � 1 and then a back charge transfer role in
equation (15) is not properly justified [15]. For point par-
ticles, Rm – the minimum distance between reactants – is
set equal to zero. The NAP method results in plausible
behavior of probability P (t) only for low concentration of
acceptors, or low rate constants of charge transfer [15].

The third averaging procedure; the new account of back
transfer reaction

We discuss the reaction:

D∗ + A→ [
D+. . .A−]

, (21)

according to the kinetic scheme, equation (1). The basic
equations are:

N(t) + Ngr(t) + P (t) = 1 (22)
Nnct(t) + P (t) = 1. (23)
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The forward and back reaction occur with rate con-
stants (10) and (11).

For donor excited state averaged probability we have
the known equation [12–14]:

dN(t)/dt = −N(t)
[
1/τ − 4πCA

∫ ∞

r12

∂nf (r, t)/∂tr2dr

]
.

(24)
Pct(0) = 0,

nf (r, 0) = 1. (24*)

For liquids:

∂nf(r, t)/∂t = −kf (r)nf (r, t)

+
(
D2/r2

)
(∂/∂r)r2(∂/∂r)nf (r, t). (25)

Using equation (23), it follows:

dP (t)/dt = −dN(t)/dt− dNgr(t)/dt. (26)

In equation (24) the integral term is determined ac-
cording to the model of independent “vessels” [7,18]. We
need to examine equation (26). In every “vessel” at time
t = 0 there exists only one excited donor [14] due to the
low excitation power. In any following time t > 0 in the
“vessels” there can be an excited donor N(t) a donor in
the ground state Ngr, or a donor in the cation state, P (t).
In this last case we have in the “vessel” also an accep-
tor in anion state. In this case, considering a donor in a
cation – state, we are interested in its transfer into the
donor ground state due to the charge back transfer from
acceptor-anion to donor in its cation state. In the given
“vessel” any acceptor can be in the anion state – but only
one acceptor. It is evident that this case has the same
mathematical properties as the case of a “vessel” contain-
ing an excited donor. Here the decrease of the probabil-
ity P (t) (due to the back charge transfer) means an in-
crease of the donor’s ground state probability.

dNgr(t)/dt = −dP (t)/dt|(due to back transfer) (27)

dNgr(t)/dt = −4πCAP (t)
∫

∂nb(r.t)/∂tr2dr. (28)

Finally, we have:

dP (t)/dt = 4πCA

∫
[N∗(t)∂nf (r.t)/∂t

− P (t)∂nb(r.t)/∂t]r2dr. (29)

And for liquids:

∂nb(r, t)/∂t = −kb(r)nb(r, t)

+
(
D1/r2

)
(∂/∂r)r2e−V (∂/∂r)eV nb(r, t). (30)

This equation must be solved with initial condition:

nb(r, 0) = 1. (30*)

Equation (30) uses the Coulomb effect unlike equation
(25). Since the position dependent rates in equations (29)

and (30) account for the reaction wherever it happens, the
reflecting boundary condition must be used:

∂nf,b(r, t)/∂r|r12 = 0

and this determines the influence of the diffusion.
In place of the expression (29), previous theory [3–5]

states here erroneously P (t) = 1. In equations (25), (30)
the diffusion coefficients D1, D2 have different influence
on P (t): the first results in its increase, the second in
its decrease. This is a reason for considering different D1

and D2 in equations (25) and (30).

4 Discussion

It follows from a simple physical consideration that the
donor cation state probability P (t), as a result of the re-
versible charge transfer in a liquid solution independent
of the space character (the Euclidean infinite or restricted
space, or fractal media [17–22] of various dimensions),
must satisfy the following simple conditions as an effect of
the causality principle:

A. The probability P (t) must be an increasing function
of the acceptor concentration for any relation between the
rate constants of the forward and back charge transfer or
between the characteristic parameters of these rates for
any viscosity of the solution. The NAP theory [3–5] does
not satisfies this condition [15]. As shown in reference [21]a
(Eq. (1)) this probability is an increasing function of CA

in the case of kb(r) = 0 and D = 0. Such a behavior must
be expected in the common case kb(r) > 0.

B. P (t) must be an increasing function of the charac-
teristic distance Rf = Rb in any case. These conditions
formulated in reference [15] for solids are not fulfilled in
the theory of [3–6] for RCT. Obviously however, these con-
ditions are also just for liquids. It follows from our analysis
that the NAP results do not satisfy these conditions and
demands for liquids or for solids [15]. Moreover, in the
case of low rate constants of the charge transfer, when the
remote transfer is not effective, the boundary conditions
for equation (30) are essential and the partially reflecting
boundary condition [16] must be used.

C. The probability P (t) must be an increasing function
of the lifetime τ . In fact, if time τ → 0, then there is no
reaction: the donor ‘s transition to the ground state occurs
prior to the charge transfer.

RCT in infinite space

In infinite space, obviously, N(t) < Nq(t) where q means
restricted or fractal space. The first term in the right side
of the equation (15) decreases with the increase of CA

and Rf , and it is strongly sensitive to the space char-
acter. In particular, it is minimum in infinite space, and
that in its turn increases the role of the second term in
the right side of equation (15). The role of the charge back
transfer increases with the increase of the reaction space
and its dimension. Such a growth is physically not prop-
erly founded and inexplicable. Let us discuss condition A
of Section 5.
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Fig. 1. (a) The dependence P (t), the role of CA for the NAP
model, equation (14). D = 10−5 cm2/s, Rf = 7, Rb = 8, af =
ab = 1, r12 = 5, rc = 10, all in Å. (b) The dependence P (t), the
role of CA for new theory, equation (30). Rest of parameters
as in Figure 1a.

The cation state probability cannot be (as a result
of the causality principle) a decreasing function of the
acceptor concentration, of the reaction volume and of
the rate constant of the forward charge transfer (for
any back transfer rate constant and at every moment
of time t). The functions (14) and (15) do not satisfy
these demands (Fig. 1). Here, it is assumed that the con-
centration of acceptors is much larger than that of the
donor, and acceptor-acceptor excluded volume effects are
neglected. Figures 1a and b shows the dependences of
Pmax(t, CA) – the maximum value of the probability P (t)
as a function of the acceptor concentration according to
the NAP model [3,4,9] and new theory [Eqs. (29) and
(30)], respectively. We see a decreasing branch and then
an increase of this probability in Figure 1a, which con-
tradicts the evident condition A and its increase as seen
here for the new theory, equation (30). In the restricted
space the integral in equation (24) is small and, as a result,
N(t) ≈ exp(−t/τ). When S(t) ≈ 1, the donor – cation
state probability becomes a normal increasing function of
the acceptor concentration.

The probability P (t) is a decreasing function of D
(Fig. 2a) for Rf = Rb, = 1 Å in the NAP model [3–5]

Fig. 2. (a) The role of D, the NAP model, equation (14).
Rf = Rb = 1 Å, af = ab = 1 Å, r12 = 5 Å; D = 10−4, 5×10−5,
and 10−5 (bottom up) is given by cm2/s, rc = 10 Å. CA =
0.1 M/L. (b) The role of D, results of new theory, equation (30).
Rf = Rb = 8 Å, af = ab = 1 Å, r12 = 5 Å, D is given by cm2/s,
rc = 10 Å. CA = 0.1 M/L.
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Fig. 3. The dependence P (Rf = Rb). af = 1.5; ab = 1 Å. CA = 0.2 M/L. Euclidean space. D = 10−5 cm2/s. rc = 10 Å.
NAP model.

Fig. 4. The dependence P (Rf = Rb) for new theory, equations (29) and (30). The rest of parameters as in Figure 3.

and is an increasing function of D in our theory (Fig. 2b).
As shown in reference [11], the charge transfer rate con-
stant is proportional to 1/D for low Rf and is ∼D for
high Rf . However, our numerical analysis shows that this
fact is not relevant when considering the kinetics of our
new model (Eq. (30)).

Figures 3 and 4 show the dependences Pmax(Rf = Rb).
Here a breach of the logical condition B also takes place in
the NAP model, Figure 3, namely there should be an in-
crease of Pmax according to the new theory, equation (30).
Hence, the behavior of functions (14) and (15) do not cor-
respond to the physical sense of the donor-cation state
probability P (t).

It should be noted that the mobility of excited neu-
tral molecules and ions have different influences on charge
separation kinetics. The first results in an increase of the
probability Pmax(t), but the second should result in a de-
crease of this probability. However, in Figures 5 and 6 we
see the different results for the two theories under consid-
eration: the NAP model not gives a decrease of Pmax(t)
with increase of D2, the ion mobility, in contrast with the
new theory.

Figures 5 and 6 demonstrate the role of ion mobility.
Obviously, ion diffusion should increase the role of the
back reaction and therefore decrease the probability P (t).
Figure 5 shows that the NAP model does not give such
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Fig. 5. The role of ion motion for NAP model, [Eq. (14)].
Rf = Rb = 10 Å; af = ab = 1 Å, rc = 10 Å; r12 = 5 Å;
D = 1e-5; 5e-6 and 1e-6], cm2/s [bottom up], CA = 0.1 M/L.

Fig. 6. The role of ion motion for new theory, [Eqs. (29, 30)].
Rf = Rb = 8 Å; af = ab = 1 Å, rc = 10 Å; r12 =
5 Å; D = 1e-2; 1e-3, 1e-4 and 1e-5], cm2/s [bottom up],
CA = 0.1 M/L.

behavior. The new theory [Eq. (30)] however, in Figure 6
verifies this statement.

Thus the theory of references [3–6] is correct only for
low CA. This is because according to this theory, the ef-
fect of back transfer increases if CA increases, while the
increase in forward transfer effect is restricted by the non
– exponential law N(t).

In all cases the logical behavior of the donor cation
state probability is broken when the condition S(t) ≈ 1 in
equation (20) is broken [15]. In the restricted, fractal space
of a low dimension, for CA � 1, for Rf ≈ 0, the behavior

of P (t) is correct, as has been shown in reference [15]. In
conclusion, we note that at a high diffusion constant D,
when the charge back transfer is only weakly effective,
the NAP method gives the correct results. As shown in
references [15,21] the NAP method is strong when kb = 0.
Thus, the conclusion of reference [6] (that the theory [7]
is correct only for CA � 1 M/L) is not grounded; there
are many cases when these theories give coincident results,
even for CA ∼ 1 M/L. The NAP model is correct, if there
is no back charge transfer [5]b and it may approximately
describe this phenomena for a low CA in infinite Euclidean
space. So, the theory of references [3–6] is preferable only
for low CA because, according to this theory, the effect
of back transfer increases without limit, if CA increases,
while the increase of forward transfer effect is restricted
by the non – exponential law N(t).

5 Conclusions

1. We discuss the remote electron transfer theory for
liquids, which has no alternative for the case of moder-
ate or slow diffusion, in the frame of an unified theory
[Eqs. (16–17)] but not the more general integral encounter
theory reviewed in [9].

2. The ‘novel’ averaging procedure, suggested in ref-
erences [3–6] for describing the kinetics of the reversible
charge transfer in the liquid infinite Euclidean space, is
correct for very low CA and low rate constants of charge
transfer. The probability of the donor cation state P (t)
for RCT [Eqs. (14, 15) with supplementary Eqs. (16, 17)],
given by the theory [3–6], results in the dependencies of
this function on high CA and on the many parameters of
the charge transfer rate constant, which contradict their
physical sense. Such results determine incorrectly RCT
kinetics.

3. The correct averaging procedure, incorporating the
first stage (forward transfer) and the second stage (back
transfer) independently, accounting for the donor’s ground
state, gives the new interesting and not contradictory re-
sults [Eq. (30)] which differ from the results of the theory
in [3–6]. In particular, an increase of ion mobility gives
a decrease of cation state probability, in contrast to the
theory presented in [3–5].

4. The different effects of Coulombic ion interaction
are determined by the space averaging procedure, used in
different theories [3–6] and [24].

5. The geometry of emission and absorption spectra of
reacting molecules results in a qualitative and quantitative
(the value of Rf and Rb [11]) influence on RCT kinetics,
but it depends on the space averaging procedure. This
influence in our new theory is not essential.

This work was supported by the Internal Berman grant for
Solar Energy. We are deeply grateful to Prof. J. Klafter for
useful discussion of this work.
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